skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Chong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 14, 2026
  2. Abstract The spatial and temporal control of material properties at a distance has yielded many unique innovations including photo-patterning, 3D-printing, and architected material design. To date, most of these innovations have relied on light, heat, sound, or electric current as stimuli for controlling the material properties. Here, we demonstrate that an electric field can induce chemical reactions and subsequent polymerization in composites via piezoelectrically-mediated transduction. The response to an electric field rather than through direct contact with an electrode is mediated by a nanoparticle transducer, i.e., piezoelectric ZnO, which mediates reactions between thiol and alkene monomers, resulting in tunable moduli as a function of voltage, time, and the frequency of the applied AC power. The reactivity of the mixture and the modulus of a naïve material containing these elements can be programmed based on the distribution of the electric field strength. This programmability results in multi-stiffness gels. Additionally, the system can be adjusted for the formation of an electro-adhesive. This simple and generalizable design opens avenues for facile application in adaptive damping and variable-rigidity materials, adhesive, soft robotics, and potentially tissue engineering. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  3. Free, publicly-accessible full text available August 13, 2026
  4. The rising atmospheric CO2concentration is one of the biggest challenges human civilization faces. Direct air capture (DAC) that removes CO2from the atmosphere provides great potential in carbon neutralization. However, the massive land use and capital investment of centralized DAC plants and the energy-intensive process of adsorbent regeneration limit its wide employment. We develop a distributed carbon nanofiber (CNF)–based DAC air filter capable of adsorbing CO2downstream in ventilation systems. The DAC air filter not only has the potential to remove 596 MtCO2year−1globally but can also decrease energy consumption in existing building systems. The CNF-based adsorbent has a capacity of 4 mmol/g and can be regenerated via solar thermal or electrothermal methods with low carbon footprints. Through life cycle assessment, the CNF air filter shows a carbon removal efficiency of 92.1% from cradle to grave. Additionally, techno-economic analysis estimates a cost of $209 to 668 in capturing and storing 1 tonne of CO2from direct air. 
    more » « less
    Free, publicly-accessible full text available October 17, 2026
  5. In situelectrochemical analysis enables access to metal aquo PCET model complexes which are synthetically elaborated and speciation was determined. 
    more » « less
    Free, publicly-accessible full text available March 17, 2026
  6. Free, publicly-accessible full text available January 16, 2026
  7. A metal-free and Selectfluor-mediated selective oxidation reaction of benzo[d]isothiazol-3(2H)-ones in aqueous media is presented. This novel strategy provides a facile, green, and efficient approach to access important benzo[d]isothiazol-3(2H)-one-1-oxides with excellent yields and high tolerance to various functional groups. Furthermore, the purification of benzoisothiazol-3-one-1-oxides does not rely on column chromatography. Moreover, the preparation of saccharine derivatives has been achieved through sequential, double oxidation reactions in a one-pot aqueous media. 
    more » « less